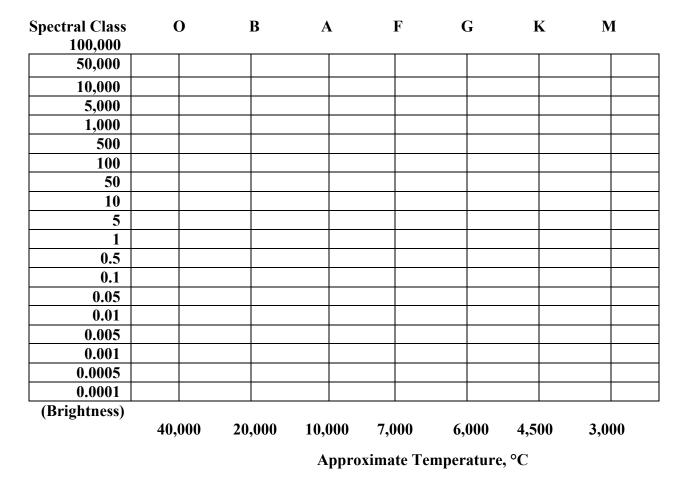


| Name |                |
|------|----------------|
| Per  | Table <u>-</u> |

## How is a Star's Color Related to Its Temperature?

On a clear night you have surely noticed that some stars are brighter than others. But stars also have different colors. Rigel is blue, and Betelgeuse is red. Capella and our Sun are yellow. In this activity you will make your own Hertzsprung-Russell diagram. You will see how star brightness, color, temperature, and class are related.


**Materials:** Colored pencils (red, orange, yellow, blue)

## **Procedure:**

- 1. Study the star data chart below. Note that the sun, used as a standard of brightness, is given a value of 1. The brightness given for each other star shows how that star compares with the sun.
- 2. Using an X as a plot point, <u>plot the data</u> from the chart on the graph on the next page. Label the Sun plot only.
- 3. Stars with surface temperatures up to 3,500°C are red. Shade a <u>vertical</u> column from 2,000°C to 3,500°C a light red.
- 4. Shade other color columns as follows: Stars up to 5,000°C are orange-red; up to 6,000°C yellow-white; up to 7,500°C blue-white, and up to 40,000°C blue.
- 5. Look for patterns in your graph. Compare it to the H-R diagram supplied by your teacher.
- 6. Label the main sequence, the red super giants, and the white dwarfs.

## **Star-Brightness Data**

| Star-Drightness Data |         |            |  |               |         |            |  |  |
|----------------------|---------|------------|--|---------------|---------|------------|--|--|
| Star Name            | Approx. | Brightness |  | Star Name     | Approx. | Brightness |  |  |
|                      | Temp °C | (Sun = 1)  |  |               | Temp °C | (Sun = 1)  |  |  |
| Sun                  | 5,300   | 1          |  | Canopus       | 7,100   | 1,500      |  |  |
| Alpha Centauri A     | 5,500   | 1.3        |  | Arcturus      | 4,200   | 90         |  |  |
| Alpha Centauri B     | 3,900   | 0.36       |  | Vega          | 10,400  | 60         |  |  |
| Barnard's Star       | 2,500   | 0.0004     |  | Capella       | 5,600   | 150        |  |  |
| Lalande 21185        | 2,900   | 0.005      |  | Rigel         | 11,500  | 40,000     |  |  |
| Sirius A             | 10,100  | 23         |  | Betelgeuse    | 2,900   | 17,000     |  |  |
| Sirius B             | 10,400  | 0.008      |  | Achernar      | 14,000  | 200        |  |  |
| Ross 248             | 2,400   | 0.0001     |  | Beta Centauri | 21,000  | 3,300      |  |  |
| 61 Cygni A           | 3,900   | 0.08       |  | Altair        | 7,700   | 10         |  |  |
| 61 Cygni B           | 3,600   | 0.04       |  | Aldebaran     | 3,900   | 90         |  |  |
| Procyon A            | 5,200   | 7.5        |  | Spica         | 21,000  | 1,900      |  |  |
| Procyon B            | 7,100   | 0.0005     |  | Antares       | 3,100   | 4,400      |  |  |
| Epsilon Indi         | 3,900   | 0.13       |  | Deneb         | 9,900   | 40,000     |  |  |
|                      |         |            |  | Beta Crucis   | 22,000  | 6,000      |  |  |



## **Questions:**

- 1. What is the <u>general relationship</u> between temperature and star brightness? (Hint: Main Sequence)
- 2. What relationship do you see between star color and star temperature?
- 3. How does the sun compare to the other stars on the main sequence?
- 4. What star class does our sun belong to?
- 5. A star is classified as being in <u>class B</u>. What is its color? Temperature?
- 6. We know <u>dwarfs</u> are small—smaller than our sun. How can they be so bright?